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j ABSTRACT

(An abstract notion of the scaling of production factors is formulated.
Through this formulation, homothetic production correspondences are
generalized. Such generalization makes clear the basic structure of
homotheticity and the associated expansion paths,

‘.




GENERAL HOMOTHETIC PRODUCTION CORRESPONDENCES
by

King-Tim Mak

INTRODUCTION

Production correspondences exhibiting certain scaling laws have
been investigated over the years. Apart from the simple homogenous
technologies, Shephard in [5], [6] introduced and studied homothetic
and semi-homogenous structures and Eichhorn [2], [3) developed the
class of quasi-homogenous production correspondences. It was shown
in [4], that these various structures are special classes of the family
of ray-homothetic structure, which in turn was characterized in terms
of linear (proportional) expansion paths. Al-Ayat and Fdre [1] then
formulated the class of almost ray-homothetic production structure
which includes ray-homotheticity while allowing for nonproportional
changes in the inputs (outputs). Nonlinear expansion was also investi-
gated there.

In this paper, scaling of production factors is formulated abstractly
so as to encompass all the aforementioned structures. By doing this,
insight into the structure of homotheticity is gained.

The arguments to follow are carried out within the framework of a
production technology introduced in Shephard [6]. A mapping

]Rm

x =+ P(x) ¢ 2 '+, of input vectors x s‘R: to subset P(x) of all

m
output vectors u € R* obtainable by x 1is called an output correspon-

dence. Inversely, the input correspondence u = L(u) := {x | u e P(x)}

determines the set of all input vectors yielding the output vector u e RT

.



Both L(u) and P(x) are assumed to satisfy the inversely related
set of weak axioms in [6]. Unless specifically indicated, free dis-
posability of inputs or outputs is not enforced, nor is the convexity

of L(u) or P(x)

r———
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2. SCALING OF PRODUCTION FACTORS AND GENERAL HOMOTHETICITY

General scaling operation on factor (input or output) space is

modelled by

(2.1) Definition:

1 n n . s . noo.. .
T:R, xR, +R_ isa scaling operation on space R_ if it

satisfies:
. 1 n n .,
(1) for all (u,x) € R, xR, , T(u;*) :]Rz > R, is 1-1 and

onto map, and T(*;x) : mi - Ri is 1-1 map if x # 0 ;

(i1) T(l;x) = x ; T(u,0) = 0 for all u e Ri; ;
(1ii) T(u;x) =y = T(l/uz:y) = x for u e IR}_,, 4
(iv) T(Asu3x) = T(A;T(p;x)) for all (A,u,x) € Héi X Bﬁ: .

It should be noted that the above set of assumptions is not independent;
in particular, (ii) and (iv) imply (iii): if u >0 and T(u;x) =y ,

then x = T(1l;x) = T(1/peu;x) = T(L/u;T(u,x)) = T(1/u,y)

(2.2) Definition:

For given scaling operation T on R: , vector y 1is a scaled version
of x , denoted yRx , if 3IX ¢ Eﬁ; with T(A\3x) =y .

The relation R induced by T clearly satisfies

xRx , by (2.1-ii);
yRx e=e xRy , by (2.1-iii);

zRy and yRx = zRx , by (2.1-iv).

Thus, R generates equivalence classes of scaled versions of vectors.

Denote the partition of space .R: via such equivalence classes by
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T:= {Ca}asA where A 1is a collection of representative elements, one
from each equivalence class. If x' ¢ A, then Cx' is simply
{x | xRx'} . The singleton {0} belongs to T . All this should be

clear from the following example of usual (ray) scaling of vectors:

(u,x) s]Ri_x IR_I:_ + T(u3xX) := pex 3
A:={y | ||lyll =1}y u {0}, ||-|| denotes Euclidean norm;
for ye A C:={A-y|keml}
3 y 4 .

(2.3) Definition:

An output correspondence x - P(x) with scaling operation T on
input space is called scale homothetic if it satisfies a functional

equation of the form

P(T(A;x)) = w(r,x) » P(x) for all (A,x) emixmi‘
(2.4)

w:mi_xmi->m1

= _ 1 n
+ P(l,x) = Y(X,0) =1 for all X ¢ ]R_H_ s X E ]R+ .

If H is a scaling operation on output space, the scale homothetic
input correspondence is defined analogously.

For simplicity, scaling operation will henceforth be denoted by the
symbol * (or ®), that is, with x,T (u,H) addressing to the input

(output) space and I ¢ ]Ri_

A*g = T(X;x) A@u ;= H(A;u)

(2.5) Proposition:

An output correspondence X - P(x) 1is scale homothetic if and only

n 1
if 3F: 1R+ > ]R+ such that
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pure) = BB L pio L ue Ry, (2.6)
Since (2.4) implies (2.4), it is only necessary to prove (2.4)
implies (2.6). For X , u e Kﬁh ,
P((A-w)*x) = v(A-u,x) < P(x) (by (2.4)),
also
P((A-u)*x) = P(A*(u*x)) by (2.1-iv)
= P, u*x)P(u*x) = v(A,u*x) - P(1,x) * P(x)

This implies y satisfies the functional equation

pQep,x) = PO, u*x) « p(u,x) . 2.7

To solve this functional equation, an auxiliary function

.m0 4 wE
f.]R+\{0} R

+ is defined as follows:

(a) arbitrarily select a vector ia from each of the equivalence
class C , C, # {0} , where {Ca}aeA is the partition by T ;

(b) for vy ¢ C, » f(y) 1=y iff y = u*ia

Note that if y ¢ C, and y # 0, we have f(y) = u = T—l(y;ia) where

-1 .- . : 2y .wl oo, =
T ( ,xa) is the inverse to the function T( ,xa) .n{+ > n{+ with X,

fixed.

Suppose y € C_ , y #0. Let u:= f(y) . Since u >0, vy € C,

implies u*y ¢ Ca ; and




0 = sttt

% 6
4
i Ay
= Hxy e
H E(u*y) =T “(u yix,)
i = Tl AT (R )R )
’ *Ta’
S D S
=T “(T(u ,xa),xa)
S ERTREIC)
That is to say
E(udy) = ue £(y) for V(u,y) e Ry, x (R\{0}) . (2.8)
If x=0, let F(A*x) =1 in (2.6) for all A ¢ ]Rik , then (2.6) holds.
If x#0, let Xx:= 1/f(u*x) , and rewrite (2.7) as
(/£ (u*x),x) = Y(1/£(u*x),u*x) * Y (u,x) 1
[
From (2.8), it follows that §
- V(A/E(x),x) ‘
b, Y(1/f (u*x) , p*x)
Defining
F(u*x) 1= [$(1/F(uex) ,uxx) ] T (2.9)
and noting that 1#*x = x , it follows that
_ F(u*x)
Y(u,x) Fx)
and (2.6) is established. Q.E.D.

(2.10) Examples:

(i) Ray-homothetic output correspondence:

(A,x) = T(A3x) := A *x ;

P(T(X;x)) = P(A+x) = y(A,x) * P(x) . 4

+ B - - e PR e S 0 Pt
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Almost ray-homothetic output correspondence:

Given ai >0, 1i=1, ..., n

(A,x) > T(x;x) ¢

P(A*x) = ¢(X,x) » P(x)

A scaling operation constructed by transformations:

Let functions Gi: Ri - Ri (=1, ..., n) satisfy:

(1ii)

L e,

(a) Gi(O) = 0 and Gi(a) >0 if a > 0

(b) Gi nondecreasing and Gi(a) > 4o as q > +» ;

! n . .
(¢) for x , vy e ng_, x # vy implies (Gl(xl), ceey Gn(xn)) #

(G (y))s +es G (7))

Furthermore, let Gl be invertible with inverse function
-1 X 1 n
G1 (*) . Define for (6,x) ¢ E&+ x ]R+

R Ty —

0, 1if x=0;

G, (8a) G (8a) -1
T(85x) : = EI?ET— T X5, ""E;TEY_. x | where a =6, (xl) , if X, #0 ;

B+x , if x#0, X = 0 .

That T(+;+) defines a scaling operation may be easily

verified.

Note that if F 1is scale-homogenous of degree 8 (B > 0) , i.e.,

F(u*x) = uB * F(x) ,

then the output correspondence, as given by (2.6) is also scale-homogenous

degree B8 , i.e.,
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* - 8 -
P(u*x) W e P(x)
Another special case of interest is when y(u,x) in (2.4) has the
form y(u,x) = 8(u,¢(x)) where ¢ is scale homogenous of degree B .
Then (2.7) may be rewritten as
8Chou,6(x)) = a0LuB e () - G, 0(0)) (2.11)

which by manipulation (using (2.11) itself) gives

sy = 208D _a0u-eE 1) /a8 1)
Hs ) 1/8 1/8
A(A,u"9-1)  AQued™ T,1)/ACu¢"" T,1)

where for simplicity, ¢ denotes ¢(x) . With the definition

1/8

f(y) = A(y »1) , the solution to (2.11) is seen to be

~

B0 ) = F0C0800)
F(¢(x))

Then the output correspondence has the form similar to the usual ray-

homothetic structure (see Fire and Shephard [4]):

B8
P(u*x) = FEu $G)) P(x)
F(¢(x))

with ¢ scale homogenous of degree B .
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3. INVERSELY RELATED SCALE HOMOTHETIC STRUCTURES

In the last section, scale homothetic structure is defined for the
output correspondence. In general, scale homothetic output structure
does not imply the same for the input structure. However, if both the
input and output correspondences are in some sense homothetic, special
structures arise (as in the case that when both the input and output
correspondences are ray-homothetic, they are semi-homogenous; see [3]).

Two such special structures are investigated in this section.

(3.1) Definition:

Output correspondence X =+ P(x) with scaling operation T on input
space is semi-homogenous if for each index a of the partition {Ca}aeA
induced by T , there exists positive scalar g(a) such that for x ¢ Ca s

POx) = A8 L pey)

(3.2) Definition:

Scaled disposability of input holds if P(x) C P(A*x) for all Xe [1,+)

Similar definition is made for the input correspondence.

(3.3) Proposition:

Let the output correspondence P and the input correspondence L be

ray-homothetic and scale-homothetic respectively; that is,

P(A+x) = y(A,x) * P(x) for all (A,x)e¢ mi_x m:‘,r ,
iR x B® > R, ¢(1,x) =1 for all xeR"
TS + ST X T

and

L(u@®u) = x(u,u) *L(u) for all (u,u)e R:'_XIR::_ ,

x:]Ri_XJR: ->]Rl

o+ x(l,u) = 1 for all ueIR: .

rm—— 4 o ————r——
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B Moreover, for each x ¢ IH+ , u € R, , let the functions ¢(-,x) and v
f x(*,u) have inverses. Then the assumption of weak disposability of
é the inputs and the scaled outputs implies the semi~homogeneity of P ]
i
i and L in the usual sense (see [6] for definition of semi-homogenity).
? Proof:
It is clear that the following relations are equivalent: !
x e Lw®u) = x(y,u)L(u) (3.4)
x/x(k,u) & L(u) (3.5)
u e P(x/x(u,u)) = $(1/x(u,u),x)P(x) (3.6)
u
L . .
x e (w<1/x<u,u>,x>) 3.7)
Consequently (3.4) and (3.7) imply
L(u) = — - L u (3.8)
x(p,u) Y(1/x(u,u),x) ) ° )
With the assumption of weak disposal of inputs, for ¢ > 1, x ¢ L(u®u)
implies o+ x € L(u®u) . By repeating the argument (3.4) to (3.8) using
o*x 1instead of x , it follows that
1/ x(u,u),0°%x) = P(1/x(u,u),x) . (3.9)
Now, using similar arguments as that leading to (2.7), the ray-homothecity
of output correspondence P gives rise to the following functional equation:

v(do,x) = Y(A,0x) * p(o,x) . (3.10) "

In view of (3.9) and the assumption that x(*,u) has inverse, the

solution to (3.10) is given by (see [3])
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P(A,x) = xh("/”x”) , h(x/||x[[> >0 . (3.11)
Then it follows from (3.8) and (3.11) that ’
L([x(u,u)]h(X/| =l ) su) = x(u,u) «L{u) . (3.12)

Note that if the ray {8y | 8 > 0} NL(u®u) # 0 and y # x , hiy/||yl])

must equal to h(x/||x||) . Furthermore, the scale-homothecity of input

correspondence u - L(u) implies that the ray {6x | 8 > 0} NL(u@Bu) ¢ ¢
if and only if {6x | @ > 0} N L(u) # # . Thus, the exponent h(x/||x|]|)
in (3.12) really depends on the equivalent classes and has the form

h(a) if u belongs to the ath equivalence class of the partition induced

by the scaling operation H .

Finally, with x(-,u) invertible, we conclude from (3.12) that

1/h(a)

L(B+u) = 6 *L(u) . Q.E.D.

Unfortunately, there does not appear to be any simple result if

the input and output structures are both scale homothetic respectively.

This is because the formula

P(A*x) = Y(A,x) * P(x)

"o
.

implicitly applies the usual proportional (ray) scaling operation
(see Example 2.10-i with a = 1) on the output space which could be

different from "®." To resolve this difficulty, we redefine the notion
of scale homotheticity. We again assume a scaling operation H on the

output space, T on the input space as before, and denote them by ®

and * respectively.

e et P - ~ e
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(3.13) Definition:
For all X ¢ ]Rl
* ’
A®P(x) : = {ue]R:_ | u=2®v for some vsP(x)} s
A*L(u) : = {xs]R:'_ | x = x*y for some yeL(u)}
(3.14) Definition:
An output correspondence x » P(x) has general scale-homothetic
structure 1if it satisfies a functional equation
POR) = (4L, 0@P(x) , YOL,x) e R, x R, ;
(3.15)
1 1 1
ViR, xR, >R, ¥(1,x) = y(1,0) = 1 ,VAicR, , xR .
(3.16) Definition:
An input structure u - L(u) has general scale homothetic structure
if it satisfies a functional equation
L(u®m) = x(u,u) *L(u) , V(u,u) e IR_LXIR: ;
(3.17)
1 1 1
x:m*xnzf»m* » x(Lu) = x(u,0) =1 ,VueR, , ue]RI .

Now, we may follow Eichhorn [3, Theorem 12.5.3] and establish

the following

(3.18) Proposition:

Let both the output correspondence P and input correspondence L

have general scale~homothetic structure, i.e., (3.15) and (3.17) hold.

Moreover, let ¢(*,x) and x(*,u) both have inverses for each x ¢ Rl
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and u € Iﬁ: . Then the assumption of scale disposability (3.2) of both

inputs and outputs implies the semi-homogeneity (3.1) of P and L .

Proof:

It is clear that the follnwing relations are equivalent:

x € L(u@®u) = x(p,u) *L(u)

1/x(u,x) *xeL(u) , by (3.13) and (2.1-1ii) (3.
ueP(l/x(u,u)*x) = y(1/x(u,u),x)DP(x) (3.
1
TG, DU € P @a.
xeL( 1 ®ul = x( L u} *L(u) (3
Y (1/x(u,u),x) w(1/x(u,u),x) °’ ) :
Thus, by (3.19) and (3.23), for all ue S , where S = {u |L(u) =0,
L(u) # mi}
(uyu) = ( L u A
XS o (1/xG,w,0 ) ' :
Since x(+,u) has inverse, identity (3.24) implies
1/u = ¢(‘—JL—— x) . (3
pu,u) '
Since y(+,x) has inverse w-l('.x) » (3.25) may be written as
-1
v T(1/u,x) ¢ x(u,u) = 1 . (3.

Using assumption of scale disposability of output, i.e.,

L(u) C L(c®u) for o e (0,1] ,

20)

21)

22)

23)

24)

25)

26)
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we may repeat the argument from (3.19) on and start with x ¢ L(® (c®u))

instead of x ¢ L(uy®u) . Then we obtain, analogously to (3.26),

w-l(l/u.x)° X(u,o®u) =1 (oe (0,1)) . 3.2
Equations (3.26) and (3.27) implies

X, o®u) = x(p,u) . (3.28)

From (3.17) by taking L(uo®u) = L(u®(0c®Du)) , we obtain the following:

for all u e S

L(uo®u) = x(uo,u) *L(u) , (3.29)

also

Lu®(o®u)) = x(u,0®u) * L(c®u)

(3.30)
= x(u,0@u) * (x(o,u) *L(w)) = x(u,0Du) * x(o,u) *L(u)
Thus, for all u e S, (3.28), (3.29) and (3.30) gives
F x(uo,u) = x(u,u) *» x(o,u) . (3.31)
And the solution of (3.31) vields
Xx(u,u) = ug(B) (3.32)
where g:B - Id; and B is the index set for the partition
H:= {DB}BEB of output space induced by the scaling operation H
(i.e., ®).
By similar argument applied to P , we obtain
pO,x) = 0@ (3.33)
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where h:A - Id; and A 1is the index set for the partition
T:= {ca}aeA of input space induced by the scaling operation T
(i.e., *).

Checking back, we see that x and ¢ as given by (3.32) and

(3.33) satisfies

s ot o g —— T e -

h(a) « g(B) =1

for all pairs (a,8) for which exists x ¢ C, »ueD, and x ¢ L(u)

B
with ueS and x e W:= {x|P(x) # {0}}

Incase u ¢S or x¢W, i.e., L{u) =0 or L(u) = n{:

or P(x) = {0} , Equations (3.15) and (3.17) still apply v* 1-(iii)),

and the proof is completed. Q.E.D.
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EXPANSION PATHS - LINEAR AND NONLINEAR

A class of expansion paths will be considered in this section.
For this purpose, define the cost minimization set K(u,p) for input

price p >0, u > 0 with L(u) not empty, by
K(u,p) = {x|xeL(u) , (p,x) = Qlu,p)} ,
where Q(u,p) 1s the cost function given by
Q(u,p) = min {(p,x) | xeL(u)}

That QCu,p) 1s well defined and K(u,p) not empty follows from the

axioms of Shephard's technology.

(4.1) Definition:

Given p >0 and u >0 with L(u) not empty, the expansion of output
according to scaling operation H (denoted ®) has linear input expansion
path if there exists a scalar valued function (8,u) - x(8,u) such that

K(8@®u,p) = x(8,u) + K(u,p) for 8 >0 .

If the input structure u -~ L(u) 1is scale homothetic, the cost

function satisfies

Q(8®u,p) = min ((p,x) | xex(8,u) « L(u)}

- X(evu) ° Q(U’P) ’

for 8 >0, p>0 and u >0 with L(u) not empty. Hence, the

cost minimization set is

K(86@u,p) =~ x(8,u) * K(u,p) . (46.2)




Thus, the expansion of output according to a scaling operation H for

scale homothetic input structure has a linear input expansion path.
For the converse to hold, further conditions on the input structure
L are imposed; namely, convexity and free disposal of inputs (i.e.,

x' > X e L(u) == x' € L(u)). The following lemma proved in [4] is of use.

(4.3) Lemma:

If L(u) 4is convex for u ¢ l{: and inputs are freely disposable,

then L(u) = U K(u,p) + Ri.
p>0

Now, assume the expansion according to scaling operation H has
linear input expansion path, i.e., (4.2) holds for 8 >0 , u > 0 and
P >0 . Since x(8,u) 1is independent of p , it follows that

U K(e®u,p) = X(e’u) + U K(U,P)
p>0 p>0

By adding R: to both sides of the above expression and invoking Lemma
(4.3), we see that L(86®u) = x(8,u) * L(u)

Thus, we have established the following:

(4.4) Proposition:

If input structure L with scaling operation H (i.e., ®) is scale
homothetic, then expansion of output according to H has a linear input
expansion path. Furthermore, if the input sets L(u) are convex and

satisfy free disposability, the converse is also true.

The relationship of scale-homotheticity (on inputs) and linear

output expansion paths may be established analogously.
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